

Recycling of Lithium-Ion Batteries

Plug-In 2013 San Diego, CA October 2, 2013

Linda Gaines and Jennifer B. Dunn Center for Transportation Research Argonne National Laboratory

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

All Li-ion recycling processes are NOT created equal!

- Different feedstock requirements
- Different products
- Different economics
- Different impacts

Four score and seven years ago our fathers brought forth on this continent, a new ma: tion, conceived in libert, and dedicated to the proposition that ale men are cresated atea agnal.

Pyrometallurgical Process: Commercial smelting process recovers some metals

- These can take just about any input, high volume
- High-temperature required
 - Organics are burned for process energy
- Valuable metals (Co, Ni, Cu) recovered and sent to refining
 - Suitable for any use
 - 70% of cobalt production energy saved; sulfur emissions avoided
 - Fabrication still needed
 - Less Co → less value
- Off-gas treated at high-T
- Li, Al go to slag
 - Could be recovered
 - High \$ and E costs
 - Mn and Ti also to slag

Intermediate physical recycling process recovers lithium carbonate and all metals

Bench-scale direct physical recycling process recovers battery-grade materials

- Low-temperature process, low energy requirement
- Components are separated to retain valuable material structure
- Does not require large volume; could process prompt scrap
- Requires as uniform feed as possible
- Recovered cathode could be obsolete when finally recovered

Quality must be assured

What if other cathodes are used instead of LiCoO₂?

- Value of recovered metals is reduced
 - Cobalt recovery drives economics now
 - Some value remains in copper and nickel
- Direct process could still recover high-value cathode material from clean stream
- Work is in progress to separate mixed cathode streams
- We haven't even begun to think about Li-S, Li-air or other developing chemistries yet.

Lifecycle analysis compares all process impacts of a product's life cycle, from raw material acquisition through production,

use, end-of-life treatment, recycling, and final disposal if any.

There is no correct way to aggregate impacts into a single "score."

Batteries are small contributors to life-cycle energy use and CO₂ emissions

But make significant contributions to life-cycle SO_x emissions, especially if cathode contains cobalt or nickel

Sulfur emissions are minimized if a cobalt- (or nickel-) based cathode is recycled

Recovery of cathode and metals maximizes energy savings

Recycling processes differ in important ways

	Pyrometallurgical	Hydrometallurgical	Physical
Temperature	High	Low	Low
Materials	Co, Ni ,Cu in alloy	Metal salts,	Cathode, anode,
recovered		Li ₂ CO ₃ or LiOH	electrolyte, metals
Feed	None	Separation	Single chemistry
requirements		desirable	required
Comments	New chemistries	New chemistries	Recovers potentially
	yield reduced	yield reduced	high-value materials;
	product value	product value	Could implement on
			home scrap

Cathode recovery could enable economical recycling

Value of constituents is low for LMO and LFP cathodes

- But cathode itself has high value
- Heat available for smelter is reduced if titanate replaces carbon
- Smelter cannot realize significant energy benefit of aluminum recovery

Direct process could recover high-value cathode material

Mixed cathode materials could be separated before or after processing

Cathode	Price of Constituents (\$/lb)	Price of Cathode (\$/lb)
LiCoO ₂	8.30	12–16
$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$	4.90	10–13
LiMnO ₂	1.70	4.50
LiFePO₄	0.70	9

Rest-of-battery recycling will help economics

- In Europe, 50% of cell materials must be recycled (as of 9/26/11)
 - Collection is assumed
 - Goals have not yet been achieved
- The rest of the battery is included in the EU 95% auto recycling requirement

- This may include enough valuable materials to make recycling the battery pay, even if LiFePO₄ cathodes are used
- The responsibility for EU recycling belongs to the company that makes the consumer product

How can we make it happen? Several strategies could facilitate recycling

Ideal world:

- Standard configurations enable design of recycling equipment
- Standardization of chemistry reduces need for sorting and multiple processes

Real world:

- Cell labeling will enable sorting
 - SAE working groups are developing chemistry identification and labeling
- Design for disassembly would enable material separation
- Favorable economics and regulations both needed
 - Europeans mandate recycling because it's right
 - US relies on finding economically-viable processes
 - Must also be environmentally sound
 - A combination of the two might work better

Industry and government are working to enable battery recycling

- DOE funds battery recycling work
- SAE has several battery working groups
 - Recycling
 - Labeling
 - Transportation
- EPA performed a life-cycle assessment
- USABC and USCAR have a working group
- There are no US laws, only voluntary collection programs

Thank you!

- Work sponsored by USDOE Office of Vehicle Technologies
- Contact me: lgaines@anl.gov
- http://www.transportation.anl.gov/technology_analysis/battery_recycling.html

